Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334602

RESUMO

Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Comunicação Celular , Imunomodulação
2.
Plast Reconstr Surg ; 151(6): 1220-1231, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508453

RESUMO

BACKGROUND: Although vascularized composite allotransplantation (VCA) has been the focus of many animal studies, further research is needed to determine the potential for a generalized model and immunosuppression regimen that applies across different donor-recipient combinations. In this study, the authors evaluated the outcome of VCAs performed on reciprocal rodent donor-recipient combinations. METHODS: VCA was performed in rats using Lewis and Brown Norway (BN) donor-recipient pairs, under the previously reported antilymphocyte serum/cyclosporine/adipose-derived stem cell regimen. Similarly, a published co-stimulatory blockade/rapamycin regimen was performed on the mouse VCA model between Balb/C and C57BL/6 strains. RESULTS: To accommodate the active behaviors of BN recipients, the allograft had to be modified and inset to the neck instead of to the groin. The tolerogenic regimen did not provide the same benefits for BN rats as it did for Lewis recipients. Increasing antilymphocyte serum dose and extending the duration of cyclosporine administration from 10 to 21 days significantly prolonged allograft survival and induced donor-specific tolerance. In mice, the co-stimulatory blockade/rapamycin regimen produced inferior VCA outcomes in BALB/c recipients than in C57BL/6 recipients. In both rats and mice, the authors identified an association between the tolerance outcome and the peripheral chimerism measured on postoperative day 30. CONCLUSIONS: Reciprocal donor-recipient combinations led to different responses toward the immunosuppression regimen and varied VCA outcomes. Sustained donor chimerism that remained in circulation for 1 month after surgery supported long-term VCA survival. Modification of the model and immunosuppression regimen accordingly is recommended. CLINICAL RELEVANCE STATEMENT: Various donor-recipient combinations respond differently to the immunosuppression regimens. Maintaining donor chimerism for 30 days after surgery improves VCA survival. It is recommended to tailor the immunosuppression regimen based on the recipient's background to optimize outcomes.


Assuntos
Alotransplante de Tecidos Compostos Vascularizados , Animais , Camundongos , Ratos , Soro Antilinfocitário , Ciclosporinas , Rejeição de Enxerto , Sobrevivência de Enxerto , Imunossupressores , Camundongos Endogâmicos C57BL , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Roedores , Sirolimo
3.
PLoS One ; 13(9): e0203624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192879

RESUMO

BACKGROUND: Tipping the balance toward regulatory T cells (Tregs) through adoptive cell therapy has shown promise to induce transplantation tolerance. Although such strategy has been explored in many mice organ transplantation studies, less knowledge was available in rat systems. Furthermore, the behaviors of the transferred cells have not been well studied in real-time fashion. METHODS: Tregs from naïve LEW rats were purified in two steps with the autoMACS system. Immunosuppression potential of these cells was examined with mixed lymphocyte reaction. Following stimulation by the alloantigen in vitro, the purified Tregs were infused into the recipients of vascularized composite allotransplantation (VCA). Secondary allogeneic skin grafting challenge was performed on the recipients with long-term survived VCA. Live optical imaging was performed to track luciferase-expressing Tregs following infusion to the VCA recipients. Expression of relevant molecules was studied by flow cytometry or quantitative RT-PCR. RESULTS: Rat Tregs were enriched following two-step cell sorting and showed immunosuppressive capacity. Upon infusion into the VCA recipients that have been treated with antilymphocyte serum and short-term Cyclosporin A, the antigen-stimulated Tregs significantly prolonged VCA survival and induced donor-specific tolerance. Tracking of the infused bioluminescent Tregs showed their specific homing to lymph nodes, and then to the VCAs. Following secondary skin grafting, Tregs specifically gathered at the donor-derived skin that was not rejected by the recipient. The in vivo migratory pattern coincided with the altered expression of cell surface molecules of CD62L, CD103, CD134, and CD278, following donor-antigen stimulation. Elevated expression of CCR4 and CCL22 in allograft may also participate in recruiting Tregs for maintenance of VCA survival and promoting donor-specific tolerance. CONCLUSION: Sorted Tregs induced donor-specific tolerance to VCA in rats. Live cell tracking demonstrated that activated CD4+CD25+FoxP3+ Tregs targeted primarily to the lymph nodes and VCA. The Tregs migrated to the secondary grafted donor skin and contributed to the maintenance of donor-specific tolerance. These behaviors were associated with phenotypic changes induced by donor antigen stimulation. Increased expression of CCR4 and CCL22 in VCA skin may also be relevant.


Assuntos
Isoantígenos/imunologia , Transplante de Pele/métodos , Linfócitos T Reguladores/transplante , Alotransplante de Tecidos Compostos Vascularizados/métodos , Animais , Quimiocina CCL22/metabolismo , Sobrevivência de Enxerto , Masculino , Imagem Óptica , Ratos , Ratos Endogâmicos Lew , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...